Graphs of Common Functions

Use the axes provided and draw the graph of the function $f(x)=x^{2}$ and $g(x)=x^{3}$

Use the axes provided and draw the graph of the function $h(x)=\frac{x^{3}}{4}$

Use the axes provided and draw the graph of the function $f(x)=\frac{1}{x}$ and $g(x)=\frac{1}{x^{2}}$

Use the axes provided and draw the graph of the function $h(x)=-\frac{3}{x^{2}}$

Use the axes provided and draw the graph of the functions $f(x)=\sqrt{x}$ and $g(x)=\sqrt[3]{x}$

Use the axes provided and draw the graph of the function $g(x)=2 \sqrt[4]{x}$

Use the axis provided and draw the graph of the function $f(x)=|x|$.

Use the axes provided and draw the graph of the function $g(x)=-\frac{|x|}{2}$

The greatest integer function, $f(x)=[[x]]$, where $[[x]]$ is the largest integer that is less than or equal to x.
Examples: $[[2]]=2,[[2.32]]=2,[[-2.11]]=-3$

Use the axis provided and draw the graph of the function $f(x)=[[x]]$.

Use the axes provided and draw the graph of the function $g(x)=[[3 x]]$

A piecewise-defined function, (Also called a conditional function) is a function defined in terms of two or more formulas, each valid for its own unique portion of the real number line.

Example: Let $f(x)= \begin{cases}2 x+3 & \text { if } x<0 \\ \sqrt{x} & \text { if } x \geq 0\end{cases}$

Use a graphing calculator to graph the function $f(x)=\sqrt{x}+2 x-1$ and copy the graph onto the axis that you see below. Plot three different points by hand to aid in your

